101 research outputs found

    Linear Optics C-Phase gate made simple

    Full text link
    Linear optics quantum logic gates are the best tool to generate multi-photon entanglement. Simplifying a recent approach [Phys. Rev. A 65, 062324; Phys. Rev. A 66, 024308] we were able to implement the conditional phase gate with only one second order interference at a polarization dependent beam splitter, thereby significantly increasing its stability. The improved quality of the gate is evaluated by analysing its entangling capability and by performing full process tomography. The achieved results ensure that this device is well suited for implementation in various multi photon quantum information protocols.Comment: 5 pages, 4 figure

    On the equivalence of Clauser-Horne and Eberhard inequality based tests

    Full text link
    Recently, the results of the first experimental test for entangled photons closing the detection loophole (also referred to as the fair sampling loophole) were published (Vienna, 2013). From the theoretical viewpoint the main distinguishing feature of this long-aspired experiment was that the Eberhard inequality was used. Almost simultaneously another experiment closing this loophole was performed (Urbana-Champaign, 2013) and it was based on the Clauser-Horne inequality (for probabilities). The aim of this note is to analyze the mathematical and experimental equivalence of tests based on the Eberhard inequality and various forms on the Clauser-Horne inequality. The structure of the mathematical equivalence is nontrivial. In particular, it is necessary to distinguish between algebraic and statistical equivalence. Although the tests based on these inequalities are algebraically equivalent, they need not be equivalent statistically, i.e., theoretically the level of statistical significance can drop under transition from one test to another (at least for finite samples). Nevertheless, the data collected in the Vienna-test implies not only a statistically significant violation of the Eberhard inequality, but also of the Clauser-Horne inequality (in the ratio-rate form): for both a violation >60σ.>60\sigma.Comment: a few misprints were correcte

    Quantum estimation of the Schwarzschild space-time parameters of the Earth

    Get PDF
    We propose a quantum experiment to measure with high precision the Schwarzschild space-time parameters of the Earth. The scheme can also be applied to measure distances by taking into account the curvature of the Earth's space-time. As a wave-packet of (entangled) light is sent from the Earth to a satellite it is red-shifted and deformed due to the curvature of space-time. Measurements after the propagation enable the estimation of the space-time parameters. We compare our results with the state of the art, which involves classical measurement methods, and discuss what developments are required in space-based quantum experiments to improve on the current measurement of the Schwarzschild radius of the Earth.Comment: 11 pages, no figures. Ivette Fuentes previously published as Ivette Fuentes-Guridi and Ivette Fuentes-Schulle
    • …
    corecore